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A study is made of the supersymmetric transfer matrix of the n-orbital 
linear chain with Gaussian nondiagonal and diagonal disorder in the matrix 
(Hubbard-Stratonovich) variables. This formalism is applied to the one-point 
Green's function. Invariant functions of supersymmetric matrices are discussed 
in Section 3. 
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1. I N T R O D U C T I O N  

Supersymmetry is expected to provide us with a useful computational tool 
in several areas of physics. In solid state physics this was confirmed in 
much work having its roots in the 1979 paper by Parisi and Sourlas (1) (for 
reviews see Refs. 2-4). 

The supersymmetric transfer matrix formalism in the spin (vector) 
variables was first suggested by Efetov (2) and was rigorously exploited by 
A. Klein and co-workers (see, e.g., Ref. 3). Campanino and Klein (5) used it 
to study the density of states for the one-dimensional Anderson model 
with diagonal disorder, whereas Klein  etal .  ~6) studied one-dimensional 
localization. 

In this paper we consider the one-dimensional n-orbital model with 
Gaussian diagonal and nondiagonal disorder proposed by Wegner. (7) 
Defining a supersymmetric transfer matrix after performing the Hubbard- 
Stratonovich transformation, (4) we find a compact formula for the one-point 
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Green's function of the model. By integrating out the noncommutative 
variable, we get an interesting series expansion of the one-point Green's 
function starting with the Green's function of the zero-dimensional 
(Wigner) model. 

We use this expansion to prove regularity of the density of states, 
improving some results in Refs. 8, 9, and 13. In one-dimensional models 
with nondiagonal disorder this is a nontrivial problem. Indeed, it is known 
that the density of states can be singular at E = 0 ,  ~1~12) because of some 
strange resonance phenomena. Adding a portion of diagonal disorder to 
the nondiagonal one restores regularity again. 

Finally, we stress that our supersymmetric transfer matrix differs from 
that in Ref. 5. It includes the Hubbard-Stratonovich transformation of the 
supersymmetric spin variables used in Ref. 9. In the new dual (matrix) 
variables this formalism is supposed to apply in the region of extended 
states of models that exhibit such a regime. (7'13) 

2. THE SUPERSPACE ONE-POINT GREEN'S FUNCTION IN 
TH E MATRIX (H U B BAR D-STRATONOVICH ) VARIAB LES 

We start with the superspace integral representation of the diagonal 
matrix elements of the n-orbital one-point function of the unitary 
ensemble (8"9'13) in the matrix (Hubbard-Stratonovich) variables: 

Goo(A,E)= -II~Wo, e(u)lexpl-;StrQwQ-nStrln(E-Q)lDQ 
(1) 

where E is the energy ( I m E > 0 )  and A is a finite cube on the lattice 7/~ 
containing the origin. In (1) we have G = ( ( V - E )  -1 )  and ( . )  is the 
disorder average given by the Gaussian distribution on the Hermitian n x n 
matrix V (for details see Refs. 8, 9, and 13): 

nor----m - 2 xy ~ [Vxy[ dV (2) 

In (2), Mxy ~ 0 are matrix elements of a positive-definite, symmetric, and 
translation-invariant matrix M =  w-1. A typical example, which will be 
assumed in this paper, is M=(-A+rn2) -1, where A is the lattice 
Laplacian and m2> 0. For A---Z ~ and n ~ ~ ,  Goo reproduces the well- 
known semicircle law. 
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The (super) matrix Q is chosen to be 

In (3), e and 7 are (commutative, real) numbers and/~ and 0 are generators 
of a Grassmann algebra. 

We remark that in Ref. 9 we worked with the particular case 0 = fl* 
(complex conjugate of fl). This was possible because in Ref. 9 we never used 
supersymmetry (we used only supervariables). Symmetry arguments 
require working with a general Q given by (3). Finally, by definition, 

DQ =-~-~ dQ = dc~ dT dO dfl 

The imaginary factor in front of 7 in Q must be introduced in order to 
assure convergence in (1). 

We remark that the integral representation (1) in the zero-dimensional 
case (Wigner model) is identical with one given by Br6zin/14'15) 

The superspace function under the exponential function in (1) is 
invariant under a (superspace) conjugacy transformation Q--, S-1QS with 
S nonsingular. In order to be able to exploit this symmetry, we will study 
in the next section some supersymmetric matrix invariants which recall the 
Parisi-Sourlas vector invariants/1'3) The content of Section 3 could be of 
some use for other problems, too. 

3. S U P E R S Y M M E T R I C  M A T R I X  I N V A R I A N T S  

In this section we will prove some results about invariant functions of 
2 x 2 supermatrices 

;) 
where c~, 7 e ~ and 0 and fl are two generators of a Grassmann algebra. We 
find it very convenient to work with the complex variables z = ~ + i7 and 

= e -  i7. We say that a function 

F(Q)=Fo+FIO+Fefl+F30[3; Fi=-F~(z,Z), i=0 ,  1,2, 3 

is regular if Fi(z, ~) belongs to C'(C) (continuous differentiable functions) 
for all i = 0, 1, 2, 3 (for the notations and for the z, s formalism used in this 
paper see Ref. 16, Chapter I). 
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I_emma. Let F(Q) be a regular invariant function of Q. This means 
that F(Q)= F(S - IQS)  for all nonsingular 2 x 2 supermatrices. Then there 
exists a regular function ~b(z, ~) with 

F ( Q ) = Oh(z, ~ ) + 2_ ~5________,~? q~ ( z, 0/? (4) 
z c3z 

where z = e + i T ,  ~ = ~ - i 7 ,  and q~(z, 5)=s 2 ) + C ,  where C is a 
constant. Furthermore, q~ can be recovered from F by taking formally 

q~= FI0=t~=o. 

Proof. We impose the conditio n F(Q)= F(S - IQS)  for S given by 

, , (1 ~ 0) 

~ 1 - ~  1 

where 0 and/~ are other two generators of the Grassmann algebra to which 
0 and/?  belong. 

We find using $1 that F1 = F2 = 0. Use of $2 completes the proof, as a 
lengthy but elementary computation shows. 

The following list of examples of invariant functions of matrices will be 
helpful in Section 4: 

(a) S t r  Q2 = z~ + 20/? 

(b) S tr Q3 = ~(�88 + �88 2) + 3zO/? 

Here ~b(z, ~) = 5(�88 + 3z2); (2/5) ~?~/Oz = 3z. 

(c) S d e t ( E -  Q) -  ~ = exp[ - S tr l n ( E -  Q)] 

2~ 4 
= 1 Jr 2 E - z - ~  t- ( 2 E _ z _ ~ )  2 0/? 

Here ~0 = 2 / ( 2 E -  z - s C = 1. 

(d) exp( - A S  tr Q2) = exp(-AzY) - 2A[exp(-Az2)]  0/?, 

Here �9 = exp(-Azs (2/~) ~?~/Oz = -2A exp(-Azs 

_ 1 [ exp(S tr Q1Q2) F(Q2) dQ2 (e) gt(Q1) - 2~ d 

A > 0  

(5) 
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where F is an invariant function of Q2. Elementary computation gives 

~(Q~)=4-~t' dz2d~2 exp 2 s  (6) 

We can obtain a nicer formula for ~ by using the Stokes and Cauchy 
formulas in the z, 5 variables (see, for instance, Ref. 16, pp. 2-3), i.e., 
roughly speaking, performing in (6) the integration by parts. One obtains, 
under the assumption that i~ g has the right boundary condition at infinity, 

) ~U(Q1) = q~r(0) + ~ f exp q~r(Z2, ~Z) 

X \z2(~+Oifll) dz2d~2' qSF(0)--q~r(0,0 ) (7) 

Boundary terms disappear because of the boundary condition. This is 
obviously an invariant function of Q1 with C = ~0r(0). 

Before entering the formalism of the (supersymmetric) transfer matrix, 
we need to know how to multiply two invariants. 

Let 

F(Q) = ~F + 2 ~?~ g ofl, 
Z ~Z 

2 Oq~B 
B ( Q ) = q~ B + z --~z Off 

be two invariant functions. Then we have 

i.e., 

2 6  
ZUZ 

~BF = ~B~F= B(Q) F(Q) 1~=0=o (8) 

where the notation is obvious. 
We remark that if F(Q) is a regular invariant function with zero boun- 

dary condition at infinity, we immediately obtain from (4) 

f F(Q) DQ = qSr(O ) -= F(O) 

This nice formula, which recalls the Parisi-Sourlas formula, (2'3) is a 
particular case of a result by F. Wegner. 

822/50/5-0-21 
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4. THE S U P E R S Y M M E T R I C  T R A N S F E R  M A T R I X  

Let us consider a linear chain of length 2l symmetric around the 
origin. The one-point Green's function of the linear chain model (with 
Dirichlet boundary conditions) is given by (1), where A is the segment of 
length 21. We take w = - A  + m 2, m 2 > 0, and introduce the transfer matrix 
(in the Q variables) 

2?(Q1, Q2) = exp nS tr Q1 Q2 (9) 

and the transfer matrix operator 

_if (~F)(QI)- 2~ T(Q1, Q2) F(Q2) dQ2 (10) 

where F(Q2) is a function of Q2 such that the integral in (10) makes sense. 
If F is an invariant function, then TF is an invariant function, too, with 
respect to the conjugancy transformation Q ~ S-IQS with S a nonsingular 
2 x 2 supermatrix [-for explicit formulas in the case n = 1 see example (e) in 
Section 3]. Taking Neumann or periodic boundary conditions, we can 
simplify (1) because in these cases 

Wou~(u) = m2~(0) (11) 
u 

A (supersymmetric) computation shows that m20~(0) can  be replaced by 
im27(0). (9) 

Now let F be a (regular) invariant function of Q=Q(-I )  and 
Q -- Q(l). Then we can write Goo(A, E) with the help of the supersymmetric 
transfer matrix as 

Goo(A, E)= 1 z rn2 1 z(O) B(0)[(TB)' F]  z (0) DQ(O) (12) 

where 

B(Q) --- exp[ -nAS  tr Q2 _ nS tr l n ( E -  Q)] (13) 

and A=�89 In (12) and (13) we have used the notation 
B(O) = B(Q(O)), where Q(0) is the matrix Q at the origin. We can choose 
F--  1, but for the time being we keep working out the general case. 

We are going to compute [(TB)/F](0).  For simplicity we take first 
n = 1. Introducing the operator T as in (10), we have from (7) 

(f'F)(Q1)=q~F(O)+l ~J exp ZlZ2+ZzZl)~F(Z2,22)2 

x +01~ 1 dzzdZ 2 (14) 
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The form of (14) suggests the definition of the new operator on regular 
functions (b(z, 5): 

(Tl~)(Z1,Sl)~---I~(0)-~-a'---i51 d z z d z  2 exp 

The rhs of (14) is perfectly defined, because e2 ~ is integrable with respect to 
d z  2 d z  2 . Then 

2 c~ 
(7"F)(Q,) = (Tq~)(z,, el) -~ 5-- 7 02,7 (Tq~)(zl, 5~) 01 fl~ (16) 

and 
2 

[ ( ~ B ) Z F ] ( O ) = ( T ~ B ) Z ~ F ( O ) - I  - - -  [ ( T ~ z ~ ) z ~ F ] ( O ) O ( O ) f l ( O )  e(o) &(o) 
[('iffB) z F]  2 (0)= [(TqSB)z ~F] 2 (0) (16') 

4 8 + ~ (T,t,~)' r ~ [ (T~) '  ~.](0) 0(0) p(0) 

In order to obtain (16') from (16), we use the fact that B is defined as the 
multiplication operator by B(Q) and go inductively. For instance, in the 
first step, we have 

[(/'B)ZF](0) = [(~B) z-1 (~B)F](0) 

= E(~B) '-~ TBF](0) 

{ [ 2 8 (TqSBq)r) 
= (iPB)t-1 Tq~Bq~Fq 5(l--1)8z(l--1-~) 

• ~*(,-1)~(,-1 )~t (0) 
and so on until we reach (16'). 

Finally, the one point function is (F= l) 

1 m2 I 20(0) fl(0) c~ ~ . (0 ) ]  aoo(A,E)=-~ f z(O) ~,B(o)+ e(o) Oz(O) 

([(T,~.)'. 1] ~ (0) X 
\ 

4 ) 
+ ~ E(r~B)'. 1](o1 ~ { E(r~)' .  13(o)} 0(0) ~(0) 

x dz(O) de(O) dO(O) dfl(O) 

\ 5(0) 8 - ~  {[(Tq~,)'. 1](0)} 

2 oztv)8 ) + [(T@B)'-1] 2 (0)-z-7~,~, q~B(0) dz(O)dS(O) (17) 
 -C65 
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We apply the Stokes and Cauchy theorems in the z, ~ variables as in 
Section 3 for O/Oz(O) in front of cOB(0) to obtain 

m2;  Goo(A, E ) =  -~-~ [(TCOB)'. 132 (0) dz(O) d~(O) (18) 

This is our compact formula for the one-point Green's function of the 
linear chain with Gaussian disorder (2) given by the matrix M = w 1, w = 
- A  + m  2. It is valid for arbitrary n. The operator T is given by (9), (10), 
and (15) and COB=B [0=p=0, where B(Q) is given by (13). 

The formula (18) is similar to (2.4) in Ref. 5, although in different 
variables. 

5. THE O N E - P O I N T  GREEN'S FUNCTION A N D  THE 
DENSITY OF STATES 

Our formula (18) for the one-point function 
structure. It can be telescoped as follows. 

Let R define the operator on regular functions 

Z1 f ( ZIZ2 + Z2Z1 ) CO(Z2, 52) (19) (RCO)(zl, 5 1 ) = ~ i  dz2~2 exp 2 z~ 

Then we have from (15) 

TCO = CO(0) + RCO (20) 

and (RCO)(0) - (RCO)(0, 0) = 0. It follows that 

(TCO)'. 1 = [ I +  RCO + (R~) 2 + .-. + (RCO)'] �9 1 (21) 

Introducing (21) into (18), we obtain 

Goo(A,E)=~-~Idz(O)d~(O)-- ~ = o [(RCOB)k. 1 ] (0) (22) 

with R given by (19). 
For n = 1 the first term in the series expansion (22) is 

G~ ) = m2 f -~-~ ~ )  dz(0) ds(0) (23) 
where 

- ( 2  + rn2) zZ 1-~ 
COB(Q)=-B(Q) ]0=•=o = exp 2 2E--z-e 

has an interesting 
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The integral in (23) can be performed in the c~, 7 variables and gives 

G~ ) m2 
-2+m2 f vl--~_EdP(V) (24) 

where 

1 - ( 2  + m 2) V 2 
dp(V) = exp dV 

norm 2 

A similar formula can be obtained for n arbitrary. 
In fact, Goo(A, E) from (22) can be expanded as follows: 

m 2 1 Z(0) 
G~176 ~>. (47ti)k'+k~f ~(--kl)z(k2) 

k l , k 2 ~ O  
k l + k 2 > 0  

exp k 1 2 ( k + l ) + z ( k  1) 

k2 

x l-I q~BEz(k), ~(k)] dz(k) di(k) (25) 
k =  k 1 

It is well known that the density of states is proportional to the imaginary 
part of the one-point Green's function. Regularity properties of the density 
of states for real E for our model with Gaussian diagonal and nondiagonal 
disorder can be inferred either from (22) by studying the operator R or 
more directly from (25). 

In this paper we will study the convergence of the expansion (25). It 
turns out that this can be done by estimating just elementary Gaussian 
integrals. We first write (25) in the a, 7 variables: 

Goo(A, E) 
m 2 1 ~(0) - i7(0) 

=Go~ ~>. (2rc)~+k2f [c~(-k~)-iT(-kl)][c~(k2)-iT(k2) ] 
k l , k 2 ~ 0  

k l + k 2 > O  

- E {E~(k ) -~ , ( k+ l ) ]~+ E T(k ) -~ (k+ l ) ]  ~} • exp 

f x e x p / -  - -  

k2 

• II  
k = --kl 

m 2 k 2 1 ") 

[~(k)2 + 7(k) 2 ] -rn2c~(-kl)2-rn2a(-k2) 2 
2 k l = k l  + 1 

c~(k) - iT(k)~ do~(k) dT(k) (26) 
1 E-~(k) J 

+ 
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In (26) we translate c~(k)--, e ( k ) - ( 1 / m ) i  and estimate the typical term by 
absolute value. We estimate the exponential coupling term by one and use 
fE-c~(k)l l < m .  After leaving out the integrals in kl,  0. k2, the bound of 
the typical term is a power of the following Gaussian integral: 

1 f_~  e (mZ/z)(ez+Y2)[1 -{- el/2m(cd + ~2)1/2] da d7 

fo = r ( l+mr)e  (m2/z>2dr= 2+(2rw)1/2 
2m 2 

The convergence condition [2 + (2rw)m]/2m 2 < 1 gives m 2 > m~-- 1 + 
(roe/2) 1/2 ~ 3.06637. 

We realize that a simple estimate by absolute value together with 
Vitali's theorem provides us with an analytic density of states for values of 
m 2 of the order of unity [more precisely, for m 2 > 1 + (rw/2)1/2]. Undoub- 
tedly, this is an improvement over the results in Ref. 9 in which analyticity 
was obtained (for arbitrary dimensions) only for comparatively very large 
values of m 2, which, besides typical cluster expansion entropy estimates, 
were dictated in Ref. 9, Section 3 by making use of Cauchy estimates and 
the Hadamard inequality for the (fermonic) determinant. In fact, one of the 
main points of this paper was an explicit computation of the determinant 
in Ref. 9, Eq. (25), by the technique of supersymmetric transfer matrix. The 
value of m~ above probably can be slightly improved by using a more 
appropriate integration contour in the complex c~ plane, but we do not 
know if the density of states of the present model is still regular for values 
of m 2 > 0  that are arbitrarily small. Nonrigorous work by the replica 
method seems to indicate analyticity for all m2>0.  ~176 For rna~<0 the 
matrix w = - A  + m 2 is no longer positive-definite and the model breaks 
down. 

6. R E M A R K S  A N D  C O N C L U S I O N S  

We have developed a supersymmetric transfer matrix formalism in 
the Hubbard-Stratonovich matrix variable. Such matrix variables 
were introduced with remarkable success by Efetov, (2~ Wegner, ~ and 
Verbaarshotetal. ~4) in the study of random matrices and random 
operators on the lattice. In these variables models with disorder make 
connection to the nonlinear a-model of statistical mechanics and quantum 
field theory. 

By similar methods to those used in this paper, we can formulate 
linear singular integral equations describing the linear chain. For the case 
of a Cayley tree the transfer matrix formalism can also be applied. In the 
language of integral equations we get nonlinearities. Some singular non- 
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linear integral equations in superspace describing a yet (from the rigorous 
point of view) uncontrollable approximation of the two-point function on a 
Cayley tree were studied by Efetov (17) and Zirnbauer. (18) It would be 
interesting to extend this study (by using integral equations or even the 
transfer matrix formalism of this paper) to the genuine Anderson or 
Wegner model. As a final remark, we mention that the supersymmetric 
formulas (2.4) and (4.1) in Ref. 5 were obtained by simple recurrence 
arguments in Ref. 19 from the (nonsupersymmetric) original Anderson 
model. This method does not work for our model and the supersymmetric 
derivation route to (18) and (21) seems essential. 
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